Weight Optimize by Automatic Unsupervised Clustering using Computation Intelligence
نویسندگان
چکیده
منابع مشابه
Automatic image clustering using a swarm intelligence approach
In order to implement clustering under the condition that the number of clusters is not known a priori, we propose in this paper ACPSO a novel automatic image clustering algorithm based on particle swarm optimization algorithm. ACPSO can partition image into compact and well separated clusters without any knowledge on the real number of clusters. ACPSO used a novel representation scheme for the...
متن کاملUnsupervised Clustering Using Fractal Dimension
Clustering can be defined as the process of “grouping” a collection of objects into subsets or clusters. The clustering problem has been addressed in numerous contexts and by researchers in different disciplines. This reflects its broad appeal and usefulness as an exploratory data analysis approach. Unsupervised clustering algorithms have been developed to address real world problems in which t...
متن کاملClustering Music by Genres Using Supervised and Unsupervised Algorithms
This report describes classification methods that recognize the genres of music using both supervised and unsupervised learning techniques. The five genres, classical(C), EDM(E), hip-hop(H), jazz(J) and rock(R), were examined and classified. As a feature selection method, discrete Fourier transform (DFT) converted the raw wave signals of each song into the signal amplitude ordered by their freq...
متن کاملUnsupervised Clustering and Automatic Language Model Generation for ASR
The goal of an automatic speech recognition system is to enable the computer in understanding human speech and act accordingly. In order to realize this goal, language modeling plays an important role. It works as a knowledge source through mimicking human comprehension mechanism in understanding the language. Among many other approaches, statistical language modeling technique is widely used i...
متن کاملUnsupervised Relation Disambiguation Using Spectral Clustering
This paper presents an unsupervised learning approach to disambiguate various relations between name entities by use of various lexical and syntactic features from the contexts. It works by calculating eigenvectors of an adjacency graph’s Laplacian to recover a submanifold of data from a high dimensionality space and then performing cluster number estimation on the eigenvectors. Experiment resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2012
ISSN: 0975-8887
DOI: 10.5120/7930-1261